

Measuring Dark Energy with Gravitational Lensing in the Dark Energy Survey

Erin Sheldon Brookhaven National Laboratory

My Involvement in BNL Projects

- Dark Energy Survey (DES), co-leading development of lensing pipelines and analysis codes to measure Dark Energy. $w = p/\rho$
- Baryon Oscillation Spectroscopic Survey (BOSS), leading the spectroscopic target selection. Primary goal measurement of Dark Energy properties
- Working on early development of Large Synoptic Survey Telescope (LSST) lensing pipelines

Dark Energy Survey

- Optical survey of 5000 square degrees in multiple bandpasses.
- 4 meter "Blanco" telescope at Cerro Tololo Inter-American Observatory, Chile.
- First light Winter 2011, running 5 years
- Measure equation of state parameter to 3% using a variety of techniques
- Camera and Telescope upgrades DOE funded

Dark Energy

Supernova Cosmology Project

Crab Nebula supernova remnant, Hubble Space Telescope

Dark Energy was discovered by examining the relative brightnesses of supernovae as a function of cosmic time

Effects of Dark Energy

- At early times is unimportant to the expansion rate and growth of massive structures
- At late times accelerates the expansion rate, dramatically increasing volume
- Decreases the overall "growth rate" of massive structures.
- Number density of massive structures is decreased relative to equivalent matter only universe

Clusters of Galaxies

Number Density of Galaxy Clusters

- In the early universe clusters form normally
- At late times Dark Energy accelerates the expansion, reducing the number density relative to a matter-only universe
- Number density of clusters with given mass is sensitive to Dark Energy

Image Courtesy SPT

Galaxy Cluster Abell 1689 Details

Hubble Space Telescope • Advanced Camera for Surveys

NASA, N. Benitez (JHU), T. Broadhurst (The Hebrew University), H. Ford (JHU), M. Clampin(STScI), G. Hartig (STScI), G. Illingworth (UCO/Lick Observatory), the ACS Science Team and ESA • STScI-PRC03-01b

Gravitational Lensing

Sheldon et al. 2007 arXiv:0709.1153

1pc = 3.26 lyr

Bin by the number of galaxies in the cluster

Sheldon et al. 2007 arXiv:0709.1153

SDSS Cluster Lensing

Using existing analysis techniques we can measure the relationship between cluster observables and the total mass

SDSS Cluster Lensing

Once the masses are known, tight constraints on cosmological parameters can be derived

Dark Energy Survey

- We can apply the same analysis in tens of equal volume samples through time
- Combining just lensing probes, constrains w to 3% statistical.
- Use supernovae and priors from other experiments (Planck) to break degeneracies
- Techniques used in the DES will translate naturally to LSST

4m Blanco Telescope Image: David Walker